

Second Semester B.E./B.Tech. Degree Examination, June/July 2024 Mathematics – II for CSE Stream

Time: 3 hrs.

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module. 2. M : Marks, L: Bloom's level, C: Course outcomes. 3. VTU Hand book is permitted.

		Module – 1	M	L	C
Q.1	a.	Evaluate $\int_{0}^{a} \int_{0}^{x} \int_{0}^{x+y} e^{(x+y+z)} dz dy dx$.	7	L2	CO1
	b.	By changing the order of integration evaluate $\int_{0}^{4a} \int_{x^{2}/4a}^{2\sqrt{ax}} xy dy dx$.	7	L3	CO1
	c.	With usual notation, prove that $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$.	6	L2	CO1
		OR	.1		
Q.2	a.	Evaluate $\int_{0}^{a} \int_{0}^{\sqrt{a^2-y^2}} y^2 \sqrt{x^2 + y^2} dxdy$ by changing into polar coordinates.	7	L3	CO1
	b.	Find the area bounded between the parabolas $y^2 = 4ax$ and $x^2 = 4ay$ by double integration.	7	L2	CO1
	c.	Using Mathematical tool, write the code to find the volume bounded by the sphere $x^2 + y^2 + z^2 = a^2$ by double integration.	6	L3	CO5
	1	Module – 2	I		
Q.3	a.	Find the directional derivative of $\phi = xy^3 + yz^3$ at the point (2, -1, 1) in the direction of the vector $\hat{i} + 2\hat{j} + 2\hat{k}$.	7	L2	CO2
	b.	Verify whether the vector $\vec{F} = \frac{x\hat{i} + y\hat{j}}{x^2 + y^2}$ is both solenoidal and irrotational.	7	L2	CO2
	c.	Prove that the cylindrical coordinate system is orthogonal.	6	L2	CO2
		OR	1	1	
Q.4	a.	If $\vec{F} = \nabla(x^3 + y^3 + z^3 - 3xyz)$ find div \vec{F} and curl \vec{F} .	7	L2	CO2
	b.	Find the angle between the normal's to the surface $x^2yz = 1$ at the points (-1, 1, 1) and (1, -1, -1).	7	L3	CO2
	c.	Using mathematical tool write the code to find divergence and curl of the vector $\vec{F} = (4xy - z^3)\hat{i} + 2x^2\hat{j} - 3xz^2\hat{k}$.	6	L3	CO5
×		1 of 3			

BMATS201

				11111	5201
		Module – 3			
Q.5	а.	Let W be a subset of $V_3(R)$ consisting of vectors of the form (a, a ² , b) where the second component is the square of the first. Is W a subspace of $V_3(R)$.	7	L2	CO3
	b.	Let P_n be the vector space of real polynomial functions of degree $\leq n$. Verify that the transformation $T : P_2 \rightarrow P_1$ defined by $T(ax^2 + bx + c) = (a + b) x + c$ is linear.	7	L2	CO3
	с.	Find the Kernel and range of the linear transformation $T : R^3 \rightarrow R^2$ defined by $T(x, y, z) = (x + y, z)$.	6	L2	CO3
		OR			
Q.6	a.	Determine whether or not each of the following $x_1 = (2, 2, 1), x_2 = (1, 3, 7), x_3 = (1, 2, 3)$ forms a basis in R ³ .	7	L2	CO3
	b.	Verify Rank-nullity theorem for the transformation $T : \mathbb{R}^3 \to \mathbb{R}^3$ defined by $T(x, y, z) = (x + 2y - z, y + z, x + y - 2z).$	7	L2	CO3
	c.	The inner product of the polynomials $f(t) = t + 2$, $g(t) = 3t - 2$ in $p(t)$ is given by $\langle f, g \rangle = \int_{0}^{1} f(t)g(t) dt$. Find i) $\langle f, g \rangle$ ii) $ f $ iii) $ g $	6	L2	CO3
		Module – 4			
Q.7	a.	Find an approximate root of the equation $\cos x = 3x - 1$ correct to four decimal places using Regula Falsi method between 0.5 and 0.7.	7	L2	CO4
	b.	The area 'A' of a circle of diameter 'd' is given by the following table:d:80859095100A:50265674636270887854Using appropriate Newton's interpolation formula for equispaced values of x, find area of the circle corresponding to the diameter 105.	7	L2	CO4
	c.	Evaluate $I = \int_{0}^{5} \frac{1}{4x+5} dx$ by Simpson's $1/3^{rd}$ rule by considering 10 sub intervals. Hence find an approximate value of log5.	6	L3	CO4
		OR			
Q.8	a.	Find the real root of $x \log_{10} x = 1.2$ correct to four decimals that lies near 2.5 using Newton Raphson method.	7	L2	CO4
	b.	Fit a polynomial for the following data using Newton's divided difference formula: x: -4 -1 0 2 5 y: 1245 33 5 9 1335	7	L2	CO4
	c.	Use trapezoidal rule to find $\int_{0}^{0.6} e^{-x^2} dx$ by taking seven ordinates.	6	L3	CO4
		2 of 3			
		2 01 5			

BMATS201

		Module – 5			
Q.9	a.	Employ Taylor's series method to obtain approximate solution at $x = 0.1$ and $x = 0.2$ for the initial value problem $\frac{dy}{dx} = 2y + 3e^x$, $y(0) = 0$.	7	L2	CO4
	b.	Apply Runge-Kutta method of fourth order to find an approximate solution at x = 0.1 given $\frac{dy}{dx} = 3x + y/2$, y(0) = 1.	7	L2	CO4
	c.	Apply Milne's predictor – corrector method to solve the equation $(y^2 + 1)dy - x^2dx = 0$ at $x = 1$ given $y(0) = 1$, $y(0.25) = 1.0026$, $y(0.5) = 1.0206$, $y(0.75) = 1.0679$.	6	L2	CO4
	· · · · ·	OR			
Q.10	a.	Apply modified Euler's method to find solution at $x = 0.1$ by taking $h = 0.1$ given $y' = x^2 + y^2$, $y(0) = 0$.	7	L2	CO4
	b.	Find an approximate solution of $\frac{dy}{dx} = \frac{y^2 - x^2}{y^2 + x^2}$, $y(0) = 1$ at $x = 0.2$ using Runge-Kutta method of order four.	7	L2	CO4
	c.	Write the mathematical tool code to solve $\frac{dy}{dx} = x^2 + y$, $y(0) = 10$ using Taylor's series method at $x = 0.1(0.1)0.3$. Consider the terms upto fourth	6	L3	CO5